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ABSTRACT

Limits on the precision of small accelcromete.rs  for inertial measurement units are enumerated
and discussed. Scaling laws and errors which affect the precision arc discussed in terms of tradeoffs
between size, sensitivity, and cost. Thermal noise and displacement transducer sensitivity constrain the
size of an accelerometer for a given sensitivity, and cmor correction for inertial navigation leads to a
tradeoff between cost and precision. Emphasis is placed on micromachined  silicon accelerometers as a
potential technology for manufacturing low cost, precision sensors, and sample calculations arc given to
illustrate the principles.

1. INTRODUCTION

Smaller inertial memuremtmt  units promise new applications, lower cost systems, and. within the
context of the design constraints of particular applications, better performance. This is cxcmplificd  by a
micro- scismorncter  developed at JPL for applications in which size is a critical parameter. 1 The small
size of this instrument has enabled its deployment at the. bottom of a borchole 7000 ft beneath the Earth’s
surface,  and by a micro-rover designed for traveling the surface of Mars. Despite  its small size, this
instrument achieved a sensitivity of 10-9 g/{Hz over a 40 Hz bandwidth. A different set of constraints
applies to the design of inertial grade accelerometers, which affect the ability to obtain such high
sensitivity in an inertial measurement unit. Although the principles arc the same, these constraints
dictate a different mechanical design and consequently different performance. For example, the larger
bandwidth and the larger dynamic range required for i]wrtial grade accelerometers result in higher noise
and rnorc robus[ design than for sensitive scisrnomctcrs.

in this paper, the limits on the precision of small accclcrornctcrs  for inertial mc~suremcnt units
arc considcrcd,  with the understanding that similar principles can bc applied to the analysis of small
gyroscopes. In order to evaluate the possibility of adapting the technology which led to the success of
JPL’s micro-seismometer program to inertial  grade accelcrometcrs,  the tradeoffs between size,
scnsitivit.y,  and cost are considered. The approach considered for achieving small size in a low-cost
aWdCrOII]~tCr  is silicon micromachining.2+3  Silicon rnicrornachining  has enabled the mass production of
slnall. low cost sensors for a variety of applications., in some cases incorporating integrated electronics
I“or signal conditioning. There is olrcody  a large comtncrcial market for rnicromachincd  accclerom,etcrs,
which arc used as crash sensors in automobile airbag systems. If low-cost, low mass precision
accckxorrrctcrs  and gyroscopes were fabricated using nlicrornachining  techniques, incxpcnsivc inertial
nilvigtition  systems could bc rnanufacturcd  t’or usc in applications for which cost was previously a
prohibitive faclor. Scaling laws related to thcrnla] noise limit the sensitivity of these sensors as the size
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is reduced, and error correction required for inertial navigation dictates a tradeoff between cost and
precision.

2. NOISE AND ACCUMULATED ERROR IN INTEGRATED ACCELERATION

The first consideration in discussing the scaling of accelerometers is the relationship between the
accumulated error and the noise floor of the instrument. Figure 1 shows a schematic representation of an
accelerometer, as it might be designed using silicon micromachining.  The mechanical design consists of
a proof mass, m, supported by a spring with spring constant k. The separation between the proof mass
and the package, s, is the. measured quantity which is used to determine the component of the
acceleration vector along the sensitive axis of the accelcrorneter. The relationship bctwccn  the motion  of
the proof mass and the acceleration is given by

d2S % d s
-jj + ~- at + c&2s =: a(t) (1)
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‘here a), (’ $:) is 2X times the resonant frequency, and Q is the quality factor of the suspension.

In order to determine the position as a function of time, the acceleration must be integrated twice.
Any error in the measured acceleration is also integrated, leading to accumulation of error in the
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Figure 1: Schematic of a micromachi’ncd  accclcrornctcr. A proof’ mass, m, is supported
by a spring with spring constant, k. ‘I”he separation bctwccn  the proof mass and the
package is measured, and used to dctcrminc  onc component of the time-dcpcndcnt
XXXlcration  Vcclor.
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calculated position. While sophisticated filters exist for minimizing this error,4 a simple calculation is
sufficient to relate  the noise floor of the instrument to the accumulated error. The noise floor should be
given in terms of acceleration noise, with units of g/@~ in order to compare it with thermal noise
equivalent acceleration (TNEA) as defined in the next section. Although thermal noise is, in general,
frequency dependent, it will be shown that the TNEA of an accelerometer is independent of frequency.
lntegralion  of the square of this noise over the frequency band of interest gives the mean square noise in
that bandwidth. The average position error as a function of time can be estimated by

Ax= $iann~ t2, (2)

where AX is the position error, &anlls  is the root mean square error in acceleration, and t is the integration
time. ~“he  root mean square error is related to an average power spectral density over the measured
bandwidth, Af, by
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Figure 2: Accurnuiatcd error in integrated accelc]  ation mcmurcd  in a 1 kHz bandwidth.
Plots of constant position error arc shown on a :raph  of noise density vs. integration time.
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Given these assumptions, it is possible to calculate the integrated error, Ax, as a function of bandwidth,
noise density (in g/~), and integration time. Figure 2 shows a plot of the integrated error, assuming a
1 kHz bandwidth. Contours of constant position error are plotted on a graph of noise equivalent
acceleration versus integration time. Given an error tolerance and an integration time, the plot can be
used to determine the maximum noise density which will keep the accumulated error below the
tolerance. As an example, an accelerometer with a bandwidth of 1 kHz and a noise floor below
10-7 g/~ will allow determination of the position to within 1 m for integration times of’ up to
approximately 4 minutes. This noise figure puts constraints on the accelerometer design due to thermal
noise related sealing laws, considered in the next section.

3. THERMAL NOISE AND ACCELEROMETER SCALING

The ultimate sensitivity achievable by any accelerometer based on measured displacement of a
spring-supported mass is determined by thermal noise in the proof mass motion.5  This noise source is
indistinguishable from signals due to real acceleration, and leads to a fundamental scaling law relating
the sensitivity to the accelerometer design. Thermal motion of the proof mass, analogous to Johnson
noise in a resistor, can be calculated from the fluctuation-dissipation theorem applied to a simple. . . . .
n~as.s/spring model of an accelerometer,

“ 4 4kbTo)r
s= —. --——— .

$*2 ~
for kbT >> ho)

mQ{(& - &)2 + —--”
Q2

(4)

where s is the noi.sc density (in mfil;j as a function of flequcncy, co, T is the absolute temperature, k~
is Boltman’s  constan~ @ is 2n times the resonant frequency of the suspension, m is the proof mass, and
Q is the quality factor of the suspension. In order to relate this noise to the acceleration signal, we usc

*4 ““S the frequency dependent responsivity  of the suspension to an applied acceleration, found by solving
equaLion 1 in frequency space:

s-. ——. ..— ..— —

‘ ‘+=Q3 “
(5)

The thermal noise equivalent acceleration is defined M the ratio of the thcrma] motion of the
proof mass (equation 4) to Lhe responsivity  of the accclcrornetcr to acceleration (equation 5),

-r4kbTtir
“1’NEA  = —-. ——- for kbq’ >> h~~ .mQ (6)
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Mgurc 3: Thermal noise equivalent acceleration as a function of proof mass for three
different resonant frequencies, for a critically damped accelerometer. Thermal noise
decreases as proof mass increases.

The thermal noise equivalent acceleration is independent of frequency, subject to the constraint given in
equation 6. However, this constraint is met for all frequencies of interest (at T = 300 K, kbT < ho for
f < 6X1012 Hz).

As an example of the effect of thermal noise on accelerometer design, assume that a
-@ ‘C’ micromachirlcd  ~nsor must be designed to have a noi.w, floor below 10-7 ~H”;~ as discussed in the last

section. As will become apparent, this is a stringent requirement for a micromachined  accelerometer,
and several constraints exist which affect the femibility  of using silicon micromachining to fabricate an
accelerometer with this precision. For the purpose of argument, assume that the inertial navigation
application requires a bandwidth of 1 kHz, and that the accelerometer suspension must bc critically
damped in order to avoid errors duc to non-linearity of the responsivity  near the resonance frequency.
Choosing a resonant frequency of 1 kHz, a measure:i~ent  bandwidth of 1 kHz, a Q of 0.5 (critically
damped), and setting the thermal noise to 10-7 g/~F~,,  figure 3 gives a required proof mass of 0.3 gm.
This is a relatively large proof mass for a micromachincd  structure. A typical silicon wafer is about
0.5 mm thick, which leads to proof mass dimensions of 1.6 cm x 1.6 cm x 0.05 cm.

To complctc  the mechanical design, the dimensions of the silicon spring which supports this
proof mass must be calculated. For simplicity, assume that the spring will be conilgurcd  as a simple
contilcvcr made from silicon, with a rectangular cross section. The cantilever will be characterized by a
width, w, a length, t?, and a thickness, t. The spring constant corresponding to these dimensions is given
@
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where E is Young’s modulus (approximately 1.9 x 1011 N/m~ for silicon’). In order to minimize cross
sensitivity of the accelerometer, choose w = 100 t. If t == 10 ~rn, which is reasonable for a
micromachined  structure, then w = 1 mm. Using the definition of the resonant frequency (k = co~m),
and the design value of fr = 1 kHz, wc calculate that / = 2.7 mm. Finally, the maximum strain in this
spring structure is given by~

(8)

where W is the load, which depends on orientation in the gravitational field and acceleration. For design
purposes, we will calculate the maximum strain when the accclcrornetcr  is at rest with its sensitive axis
aligned with Earth’s gravitational field (W = mg, where m is the proof mass). In this case,
a = 5 x 108 N/m2, which is to bc compared to the yield strcngLh  of silicon7, 7 x 109 N/rn~. Given that
the accelerometer may experience much larger signals than the static 1 g gravitational field assumed
here, this structure is rather fragile, and will require mechanical stops to prevent motion of the proof
mass beyond the elastic limit of the silicon spring. Ilowevcr,  using formula 10 (given in the next
section), we can calculate that the spring will be deilccted by only 0.25 urn in a 1 g gravitational field,
making it difficult to fabricate mechanical stops which are close enough to tic suspension to prcvcmt the
spring from breaking under conditions of high acceleration. Onc solution is to increase the thickness of
the cantilever, which will increme the overall size of the device. Keeping the same aspect ratio of width
to thickness, wc can show that the length of the spring scales as {4’3, and the maximum strain scales as
t-sjs. Ilercforc, increasing the thickness and width of the cantilever by a factor of 5 will require that the
length of the cantilever be 2.3 cm, a substantial incrcasc in the required size of the dcvicc. This will
rcducc tlw maximum strain in a 1 g gravitational field to 3X107 N/m2, in which case the structure would
reach the yield strength of silicon at an acceleration of approximately 200 g.

Rather than accepting a much larger suspension m increase the robustness, the proof mass can bc
reduced. It is possible to reduce the proof mass without increasing the thermal noise by increasing the Q
of the suspension, although this may lead to additional problems in the measurement. I“hc relationship
bctwccn the required proof mass and the thermal noise is illustrated graphically in !Igurc 4, which is
plotted for a 1 kHz resonant frequency. Most incrliai  grodc.  accclcromctcrs  operate with a critically
darnpcd  suspension in order to avoid distortion of the data near the resonant frequency and to minimize
vibration rectification errors. Nevertheless, the design goals  in this example have lcd to a relatively
large, fmgilc dcvicc, a probk:m  which can bc allcviau.xi by reducing the proof mass and rc(lcsigning  the
suspension. If we were to increase Q and reduce m in order to leave the thcrrnal  noise  unchangcti, and
wc were also to Icavc w, t, and the resonant frequency urichangcd.  wc can show that the maximum strain
dccrcascs invcr.scly  with Q to the 2/3 power:

0 = (QO)213
(so c?’ (9)
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Fi~ure 4: Thermal noise equivalent acceleration as a function of proof mass for three
dificrcnt  values of the quali~y factor, Q, for a 1 kHz resonant frequency. Thermal noise
decreases ass Q increases.

where o and Q are the new values and oo and Qo are the old values of the maximum strain and the
quality factor. By increasing the Q from 0.5 to 10, for example, the maximum strain in the spring could
be reduced to 3.2 x 107 N/n~2, corresponding to a maximum acceleration of approximately 200 g. Since
the product of mass and Q appears in the formula for thermal noise, the mms will then scale from 0.3 gm
down to 0.015 gm, and the dimensions will go from 1.6 cm on a side to 0.36 cm. Increasing the Q, then,
not only reduces the maximum strain for a given accclcration, but also significantly reduces the size of
the device. The deleterious effects of a high Q suspension, such as nonlincm response near the resonant
frequency and ringing, must be dealt with in other areas of the design.

Given the requirements of a particular application in terms of the required noise  floor, resonant
frequency and Q of the suspension, thermal noise in the proof mass motion was found to constrain the
accelcromctcr  design by requiring a minimum allowable proof mass. The spring design was additionally
constrained by requirements of robustness in the prcscncc  of large accelerations experienced by an
inertial grade accelerometer. In the next section, the ability to take advantage of low thermal noise in a
precision accelerometer is considered.

4. ACCELEROMETER SENSIIIVII’Y AND S[JSF’ENSION  STIIWNKSS

Using a suspension designed for low thermal noise, it is possible to construct a sensitive

accclcromctcr,  provided the position sensor has adequtitc  scnsitivi[y. The rcsponsivity  of the



accelerometer is given in equation  5. At frequencies well below the resonance, the deflection of the
proof mass is given by

(lo)

According to this relationship, the resonant frequency of the suspension is related to the stiffness, and
determines the deflection,s, experienced for a given acceleration, a. Note that replacing the acceleration
in equation 10 with a noise density (measured in g/ ~) will give a noise density for position
meawvment  (measured in m/rH;). In figure 5, this relationship is plotted for several different resonant
frequencies. The thermal noise floor discussed in the example of the last section, 10-7 g/~~~
corresponds to a position transducer sensitivity of 2x10-4 ~~% for a resonant frequency of 1 kHz.
Measuring deflections with this sensitivity is challenging, particularly for a small instrument. The two
most sensitive displacement transducers which have been used for small accelerometers are based on
electron tunneling and capacitance measurements of the distance between two electrodes.

Electron tunneling transducers arc among the most sensitive displacement sensors available, with
a reported sensitivity of 2.3x10-S  ~{llz at 10 Hz, and 2.7x10-4 ~/~at 1 kIIz.l~s  While this
sensitivity is near the target value in our sample design  at higher frequencies, it is not adequate at low
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I;igurc 5: Relationship between the noise equivalent acceleration of an accelerometer and
lhc required sensitivity of a disp]accment  transducer, for three different resonant
frcqutmcics.  The response is inversely proportional to the square of the resonant
frequency (for (I) ~~ @). As the resonant frequency incrcascs, the required sensitivity of
LIW displacement transciuccr  incrcascs.
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frequencies. Stability at low frequencies is important for inertial grade accelerometers, which implies
that improvement in the tunnel sensor stability is required to obtain a sensitivity of 104 ~~z~for the
design requirements considered in this example.

High-resolution capacitive displacement transducers have achieved a sensitivity of 10d  ~{H~
which indicates that capacitive techniques are a viable approach. However, these high-resolution
systems are large, making them incompatible with small accelerometers, while the capacitive
displacement transducers used for micromachined accelerometers are less sensitive than electron
tunneling tmnsducers.s$  Improved microelectronic circuits are required in order to measure capacitance
with sufficient stability to achieve 10~ ~wx-”sensi~ivity  at low frequencies. In this context, reducing
the size, of the accelerometer also reduces the magnitude of the capacitance which must be detected.
Assuming that the capacitor gap is 10 ~m, the 0.3 gm, 1.6 cm square proof mass discussed in the last
section would have a capacitance of 230 pF, whereas the smaller, high Q, 0.36 cm sc]uarc proof mass
would have a capacitance of only 11 pF. Fur(her  reduction of the accelerometer size might limit
capacitive displacement transducer sensitivity duc to the effects of stray capacitance.

5. ERROR CORRECTION AN]) INERTJAL NAVIGA11ON

Several sources of error must be corrected in order to measure acceleration with high precision
for inertial navigation.g Various forces on the proof mass arise from the Earth’s gravitational field, the
spring restoring force, buoyancy, tidal forces (dominated by the moon and sun), rotation of tbc Earth,
and the gravitational attraction of nearby objects (see t&le 1). Many of the forces tabulated in table 1
arc comparable to or greater than the signal being measured. To the extent that the.sc  forces are known
or calculable, they can be corrected as part of the data analysis. The accuracy with which this needs to
be done depends on the required sensitivity, while the ability to make these corrections depends on
accurate knowledge of the relevant parameters. Consequently, several limitations to error correction
exist which affect the final precision of the measurement. Although sophisticated error correction
algorithms improve this precision,g  the tradeoff bctwccn complexity and cost of a microma.chined
accclcromctcr  is important in many applications.

l.n order to determine the acceleration, the contribution of the Earth’s gravitational ilcld must be
subtracted from the signal. One important error in correcting for the gravitational accclcratiorl arises
from misinterpreting tilt of the accelerometer with respect to the gravitational field as a signal. A tilt
error of O.O1° would result in an error of 170 pg in acceleration in the horizontal plane.  The Earth’s
gravitational field varies with position and time, leading to several potential sources of error. 10
Sophisticated models exist for dctemlining  the local gravity vector, uncertainties in which represent one
possible limitation on the ultimate accuracy of the calculated position. In the field of gravirnetry,  models
of the gravitational ileld  begin with the gravity ellipsoid, which takes into account the variation of
gravity with latitude (g changes by approximately 0.1 yg for every 120 meters of north/south
displaccmcnt).  Gravita[ionid anoma]ics, or deviations from the gravity ellipsoid, have a wide range of
magni[udcs. Differences in position or elevation result in errors of up to 5X10-3 g. Mass deviations
t’rom a sin~plc model of the Earth result in variations of the order 5x 10-4 g to 5X10-5 g. Periodic tidal
effects account for variations of up Lo 3X 10-7 g, and long term mass displacements result in variations on
the order of 10-8 g to 10-9 g.



---

.

—.
Force Magnitude Limiting Errors

~ilKS’ gravitational fleld lg Varies with position, time
(Ciravimetry)

Orientation of sensor

Spnng’mstoring  force O-lg l’ernperatum dependent modulus of elasticity—
(in silicon, 60 l.tg/K)

Cross sensitivity

Calibration accuracy (scale factor)
—.
Buoyancy 500 )tg A-~dcnsity  fluctuations.

(Silicon in air)
Dependence on acceleration.

-rotation 0-150 yg Dcpcndcnce on sensor orientation and veioci~
(Eotvos correction) (o-lo rds)

Magnetic ~orces -0.5 Gauss tield on Iltiaction  with instrument
Earth (e.g., current-carrying wires).

Dependence on position, orientation, time.

-y of nearby objects. 1 ng

i

Prohibitively complicated to identify and track all
(30 kg object 0.5 m new-by objects.
from sensor)—.—

Table 1: Partial list of error sources for accelcroIncters  in inertial navigation, with approximate
magnitudes.
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The rotation of the Earth is a source of error ill inertial navigation, which is accounted for by the
Eotvos correction.lo  This correction requires know]mige  of the position, orientation, and velocity of the
accelerometer with respect to the Earth’s rotation axis. For a rclativel y modest speed of 10 m/s, the
Eotvos correction can bc as large as ] 50 yg.

I.he spring restoring force is subject to sevcml  sources of error, which are critical to the precision
of the measurement of acceleration. The calibration of the accclcromctcr  must bc corrected for
temperature, due to the temperature-dependence of the elastic modu]us of the accelerometer suspension,
thermal expansion of the components, and tempcmturc-related bias and gain errors in the electronics.
The temperature can be dealt with to some degree by investing some mass and power in temperature
stabilization, measurement, and correction. However, residual tcmperuture  errors after correction arc
still a limiting factor in the precision of inertial grade accclcromctcrs.

The buoyancy force on the proof mass is a source of error for sensitive accclcromc(ers.  The
sttitic  buoyancy force on a rnicromachincd proof mass in tiir is given by the ratio of the densities of air to
silicon multiplied by the weight of the proof mass. In tcnns of an cquivaicnt accclcrtition.  this turns  out



to be 0.5 mg, assuming the accelerometer is at rest in a 1 g gravitational field at atmospheric pressure.
Fluctuations in the density, or air flow around the proof mass, would cause fluctuations in the buoyancy
force which would be detected by the accelerometer as an additional noise term. For inertial guidance
applications, an impo~nt  property of the buoyancy force is its dependence on the acceleration of the
accelerometer package. Assuming that the accelerometer is enclosed (for isolation from variable wind
and pressure), the buoyancy force depends on the local acceleration (gravity plus acceleration signal).
Changing the orientation of the accelerometer package by 90” in the Earth’s gravitational field could
result in a buoyancy-related error of 0.5 mg. Evacuation of the accelerometer package would eliminate
buoyancy forces entirely m a source of error.

The gravitational attraction of nearby objects is significant only for cxtrcmcly  accurate
accclcromcters. One of the calibration techniques for precise seismometers, called G-calibration
because of its dependence on the universal gravitational constant, utilizes a 30 kg mass, which, at a
distance of 0.5 m from the instrument, produces an attractive force of approximately 1 ng.l 1

There are several important sources of inaccuracy which are present in all inertial measurement
units, which arc not bc considered in detail here. These include cross sensitivity, scale factor error, bias
error, non-linearity, vibration rectification, input voltage sensitivity, and misalignment of axes. The
correction of all of these errors requires a significant amount of calculation, which implies that the
acceleration data must be digitized. Digitization errors are particularly important for precision inertial
grade accclcromcters  which require measurement over a ku-gc dynamic range. For example, achieving 7
digit precision (0.1 Kg in a 1 g background) will depend on achieving 7 digit stability of vol~lgc
references and offsets in the electronics, and 7 digit accuracy in determining the various parameters
which go into the correction algorithms (orientation, calibration, and initial conditions). llc expense of
this effort is illustrated by considering that measuring acceleration with 7 digit accuracy requires a 24 bit
D/A ccmvcrter.  It is clear that there will be an important tradeoff between accc]crornetcr precision and
cost, due to the complexity of the electronics.

6. SUMMARY

The performance of micromachincd  accehxomcters  for inertial navigation is limited by tlm-rnal
noise, displacement transducer sensitivity, and a nunlbcr of error sources, which range from correction
for gravitational acceleration to tcmpcraturc  dcpcndcncc  of the modulus of elasticity. Taken together,
these limiting fadtors constrain the mechanical design of the accelerometer and the complexity of the
electronics to form tradeoffs between size, sensitivity, and cost. Scaling laws related to thermal noise
were discussed in tcrrns of a sample design for a rnicromachined, inertial-gmdc  accelcromctcr  which had
design parameters of a 1 kHz resonant frequency and a noise floor/ scn.sitivity  of 10-7 g/v%z. Thermal
noise was shown to present an important constraint on the size of the accelcromcter,  and fragility was
considered as a further constraint. The relationship between accelerometer response and displacement
transducer sensitivity was considered, and it was determined that disp]accmcnt  transducers rcprcscnt  a
limiting technology for precision micromachined  accclcromctcrs. Finally, error corrcc[ion for inertial
navigation was considcmd in tcnns of a tradeoff  bc~wcxm sophistication of the electronics and Lhc cost of
the accclcromelcr.
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